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The notion of nonequilibrium temperature used in extended irreversible thermodynamics~EIT! is examined
from the viewpoints of thermodynamic laws and statistical mechanics in this article. It is shown that in both the
phenomenological theory and statistical mechanics of irreversible processes the notion of nonequilibrium
temperature in some versions of EIT inevitably came about since a nonequilibrium entropy was not derived
from the thermodynamic laws but was arbitrarily assumed and consequently not given its thermodynamic
foundations. It is also shown that there is no other temperature than the one established by the zeroth law of
thermodynamics and based on the second law of thermodynamics, regardless of whether the system is in
equilibrium or nonequilibrium. When such a notion breaks down because the temporal evolution of dynamical
processes is faster than the time scale of thermometric resolution, the thermodynamics of irreversible processes
~e.g., EIT! is no longer applicable.@S1063-651X~96!10709-1#

PACS number~s!: 05.70.Ln, 05.20.Dd

I. INTRODUCTION

The concept of temperature has its origin in times much
beyond the pioneering age of thermodynamic laws according
to the historical account of thermal science by Brush@1#, but
the modern concept of thermodynamic temperature and the
attendant thermometry rest on the basic discovery of Lord
Kelvin, who recognized in the Carnot theorem@2# a univer-
sal thermodynamic basis on which to found the concept of a
universal temperature scale@3#. It is now deeply entrenched
in wide ranging aspects of physical science, especially,
through the thermodynamics of reversible processes—
equilibrium thermodynamics, and is a fundamental corner-
stone of thermal science. Fitted to a universal scale, the ther-
modynamic temperature provides a basic yardstick against
which we measure and record thermal properties of matter,
regardless of the states of aggregation and whether the sys-
tem is in equilibrium or not. For systems in equilibrium the
concept of temperature as is now known is universally ac-
cepted. Confusion lies in the domain of nonequilibrium phe-
nomena. The essential concept of temperature is founded on
the zeroth law of thermodynamics, which should not be lim-
ited to equilibrium only, but also apply to systems in non-
equilibrium states where irreversible processes occur. After
all, we talk of temperatures of animate bodies removed far
from equilibrium. If the irreversible processes in the body are
too fast for the thermal state of the body to come to equilib-
rium with any conceivable thermometric device, then the ze-
roth law is no longer applicable and consequently the ther-
modynamics of irreversible processes within the framework
of the currently accepted thermodynamic laws~e.g., ex-
tended irreversible thermodynamics! becomes inapplicable,
and an alternative description of the processes may have to
be looked for.

In recent years considerable attention has been paid to
generalizations@4–8# of equilibrium thermodynamics. A

genre of generalizations where the local equilibrium hypoth-
esis is extended to include various fluxes will be broadly
called extended irreversible thermodynamics~EIT!. There
are different versions@6–8# of EIT reported in the literature.
The points of departure are basically in the manners by
which the Clausius entropy is generalized, its thermody-
namic foundations or the lack of them, the concept of tem-
perature, and the constitutive equations. These points will be
further elaborated later when the main topic of this paper,
namely, temperature, is discussed. In such generalizations of
equilibrium thermodynamics, there naturally arise questions
regarding the temperature of nonequilibrium systems and
generalized forms of the Clausius entropy, which is the con-
jugate variable to temperature in the equilibrium theory. In
the case of nonequilibrium processes the concept of tempera-
ture has become a subject of debate@9~b!–12~a!#. In this
paper, we would like to analyze various strands of thought
published in the literature on the concept of nonequilibrium
temperature, since it is our opinion that it is crucially impor-
tant to have this concept firmly clarified and enunciated if a
rational development of irreversible thermodynamics is to be
made. This subject can be approached from both statistical
mechanical and phenomenological standpoints, which must
confluence to a unified concept valid for both equilibrium
and nonequilibrium. Reading through the literature on tem-
perature in nonequilibrium statistical mechanics, one finds
that equilibrium concepts appear entangled with nonequilib-
rium concepts in a rather vexing manner. Therefore, the first
task that we must face should be to sort them out and exam-
ine their mutual relations, if any. For this reason we will go
over even some well-trodden topics at the risk of appearing
to be repetitive and even trite. It should not be construed as a
pedantic exercise on the part of the present authors since the
aim is to give a comprehensive picture of the subject under
scrutiny, which represents a keystone concept for develop-
ment of irreversible thermodynamics.
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This paper is organized as follows. In Sec. II we briefly
review how the concept of thermodynamic temperature en-
ters the thermodynamics of reversible and irreversible pro-
cesses. We then examine the concept of nonequilibrium tem-
perature used in the version of EIT by Jouet al. @7# and
Nettleton @12~b!# in the light of the review given on the
thermodynamic concept of temperature. This then will be
followed in Sec. III by a brief review of how temperature
enters equilibrium statistical mechanics and the classical ki-
netic theory@13–15# in the early period of thermodynamics.
In this connection, we also discuss the idea of Tolman@16#
and its recent elaboration@17# in which attempts were made
to arrive at a statistical definition of temperature. We then
analyze the concept of temperature used in the statistical me-
chanical approach to EIT via a maximum entropy method as
pursued by Jouet al. @7# and Nettleton@12~b!,~c!#. This is
then followed by examination of how the concept of tem-
perature enters the nonequilibrium ensemble method
@18~a!,~b!# and argues that it is a general and logical manner
of introducing the temperature concept into nonequilibrium
statistical mechanics since it is firmly based on the thermo-
dynamic laws. The manner by which the temperature con-
cept is introduced in the nonequilibrium ensemble method is
completely parallel to that of the equilibrium ensemble
method of Gibbs. In Sec. IV, the proposition made by Jou
and Casas-Vazquez@9~a!–~c!# for a nonequilibrium tempera-
ture is specifically analyzed and discussed. Concluding re-
marks are also given in this section.

II. SECOND LAW OF THERMODYNAMICS AND
TEMPERATURE

Lord Kelvin @19# recognized that Carnot’s theorem@2#, as
a precursor to the second law of thermodynamics, which he
together with Clausius@20# enunciated, could serve as a
means to introduce a universal temperature scale, nowadays
called the thermodynamic temperature. It is well known@21#
that this thermodynamic temperature scale can be made co-
incident with the absolute temperature scale based on the
ideal gas thermometer. If the temperatures of the heat reser-
voirs of a Carnot cycle are denoted byT1 andT2 (T1.T2) in
such scale, then the efficiency«rev of the reversible Carnot
cycle can be expressed in terms of temperatures as

« rev511
Q2

Q1
512

T2
T1

, ~2.1!

whereQ1 andQ2 are the heat absorbed and emitted by the
system, respectively. We adopt the convention for the sign of
heat that heat absorbed by the body is taken to be positive
and heat emitted by the body is taken to be negative. Rear-
ranging Eq.~2.1!, we obtain

Q1

T1
1
Q2

T2
50. ~2.18!

In the case of an irreversible Carnot cycle, by the Carnot
theorem there holds the inequality

11
Q2

Q1
,12

T2
T1

~2.2!

or

Q1

T1
1
Q2

T2
,0. ~2.28!

It must be noted that the meanings and values of the tem-
peratures in Eqs.~2.1! and ~2.2! are the same despite the
differences in the meanings ofQ1 andQ2 in them;T1 andT2
are the temperatures of the heat reservoirs, whereasQ1 and
Q2 are reversible heat transfers in the case of Eq.~2.1! and
are irreversible heat transfers in the case of Eq.~2.2!.

Taking to the limit of an infinite number of infinitesimal
cycles and combining~2.18! and~2.28!, Clausius obtained his
famous inequality@23#

N52 R dQ

T
>0. ~2.3!

TheN is called the uncompensated heat—Clausius called it
the uncompensated transformation value. It vanishes identi-
cally in the case of reversible processes and is positive oth-
erwise. The important point that must be remembered is that
even if the process involved in the cycle is irreversible, the
temperatureT is that of a heat reservoir that is in thermal
contact with the system undergoing the infinitesimal process
in question and also in equilibrium with a thermometer used
to measure its temperature. By the zeroth law of thermody-
namics this temperature is also the temperature of the body
~i.e., the working substance!. The reason for this is that since
the Carnot cycle is decomposed into an infinite number of
infinitesimal Carnot cycles when the inequality~2.2! is cast
into the inequality~2.3!, the temperature of the working sub-
stance undergoing an irreversible process characteristic of
the infinitesimal Carnot cycle of interest is necessarily the
same asT, the temperature of one of the heat reservoirs. And
when Eq.~2.3! is cast into a local form, this temperature
must be regarded as the local temperature of the body in
question. Viewed in this way@22#, the heat reservoir of the
infinitesimal cycle in question may double as a thermometer
in the absolute temperature scale that indicates the tempera-
ture valueT. It is very important to recognize this meaning
of T in the Clausius inequality for an irreversible cycle since
the Clausius inequality is the crucial mathematical represen-
tation of the second law of thermodynamics and the starting
point of the mathematical formulation of thermodynamics on
the basis of the first and second laws.The body undergoes an
irreversible process and T is the thermodynamic temperature
of the infinitesimal body as well as the heat reservoir, which
can act as a thermometer. There is no other kind of tempera-
ture evident in the formulation of the Clausius inequality for
irreversible processes, namely, in the mathematical repre-
sentation of the second law of thermodynamics.

In his 1865 article@23#, Clausius suggested to calculateN
by using a cycle consisting of an irreversible segment and a
reversible segment, which reversibly restores the system to
the original state. In this case, Eq.~2.3! may be written as

N5DSe2E
irrev

dQ

T
, ~2.38!
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whereDSe is the entropy change for the reversible process
that restores the system to the original state and the integra-
tion is over the irreversible segment of the cycle. An account
of the road to the Clausius entropy is referred to in Cropper’s
paper@24#. The procedure using Eq.~2.38! for N is unsuit-
able for developing a theory of irreversible processes. The
inequality ~2.3! must be differently interpreted for the pur-
pose mentioned: we interpret the compensated and uncom-
pensated heats as two independent physical entities that ex-
actly balance each other so as to form the equation as in Eq.
~2.3!; see p. 43 of Ref.@6# and Ref.@22#.

It has been shown in recent works@6,22# by one of the
present authors that, if the uncompensated heat is expressed
in the form of a cyclic integral

N5 R dN, ~2.4!

then the Clausius inequality~2.3! can be cast into a vanishing
cyclic integral

R S dQT 1dND50. ~2.5!

This vanishing integral implies that there exists an exact dif-
ferential of a quantity called calortropy@18~a!# C in thermo-
dynamic space defined later:

dC5
dQ

T
1dN. ~2.6!

HeredN is always positive and vanishes only if the process
in the segment in question is reversible. IfdN were negative,
it would be possible to devise a cycle that contravenes the
second law of thermodynamics, but that is impossible. The
differential formdC can be put into a local balance equation

r
dĈ

dt
52“•~Qc/T!1Jc~r ,t !, ~2.7!

whereĈ, Qc, andJc are defined such that

C5E
V
drrĈ~r ,t !, ~2.8a!

T21
dQ

dt
52E

V
dr“•~Qc/T!, ~2.8b!

dN

dt
5E

V
drJc~r ,t !, ~2.8c!

with r denoting the mass density, andd/dt in Eq. ~2.7!
stands for the substantial time derivative. The temperatureT
in Eq. ~2.7! is the local absolute temperature at positionr and
time t.

If the internal energy density, specific volume, mass frac-
tions, and nonconserved variables are denoted byE, v, ca ,
and F̂ka ~k>1, r>a>1!, respectively, for anr -component
mixture, it is useful to introduce a thermodynamic space
spanned byG5~E,v,ca ,F̂ka : k>1, r>a>1!. It can then
be shown that under a set of propositions@22# regardingQc

andJc the calortropy balance equation~2.7! can be put into
a differential form fordtĈ as follows:

dtĈ5T21FdtE1pdtv2 (
a51

r

m̂adtca1 (
a51

r

(
k>1

XkadtF̂kaG ,
~2.9!

wheredt5d/dt andp, m̂a , andXka are variables conjugate
to v, ca , and F̂ka , respectively. They are local variables
depending on positionr and timet. It must be emphasized
thatT is the local temperature of the nonequilibrium system
that is given in the absolute temperature scale and that under
the propositions@22# for Qc andJc , which put~2.7! in the
differential form as in Eq.~2.9!, there is no other temperature
suggested by the Clausius inequality, namely, the second law
of thermodynamics. TheT is what is provided by thermom-
etry on the irreversible system, and that is a parameter in
terms of which the calortropy densityĈ is determined with
the help of the constitutive relations forp, m̂a , andXka in
spaceG. The differential form~2.9! tells us thatĈ is not
determined by some other means but the constitutive rela-
tions andT, when the differential form is integrated in space
G. Recall that the situation is the same in the case of equi-
librium thermodynamics since there is no direct way of mea-
suring the Clausius entropy; calorimetry and other thermo-
dynamic measurements make it possible to calculate the
Clausius entropy. The case of nonequilibrium therefore
would be no exception. In fact, when such a concept of tem-
perature is rendered meaningless, since the irreversible pro-
cesses are faster than the time scale of thermometric resolu-
tion, the Clausius inequality is no longer applicable. We then
have no mathematical representation for the second law of
thermodynamics on which to build a thermodynamics of ir-
reversible processes; in such an event there is a question of
whether thermodynamics is a meaningful description of the
process in hand. It is very important to recognize the crucial
position that the Clausius inequality occupies in thermody-
namics and the meaning ofT therein that we have elucidated
here. A mathematical study@25# of Eq. ~2.9! shows thatT21

is mathematically an integrating factor for the differential
form

V5dtE1pdtv2 (
a51

r

m̂adtca1 (
a51

r

(
k>1

XkadtF̂ka .

~2.98!

That is, this differential formV is made an exact differential
form in spaceG by the integrating factorT21. @We empha-
size thatV is a symbol for the 1-form@26# on the right-hand
side of Eq.~2.98!; it is not a function nor a differential of a
function.#

The differential form~2.9! reduces to the well-known lo-
cal equilibrium Gibbs relation for the Clausius entropySe if
Xka50 or dtF̂ka50 or both:

dtĈeq5Te
21S dtE1pedtv2 (

a51

r

m̂a
edtcaD 5dtSe ,

~2.10!

54 2503IRREVERSIBLE PROCESSES AND TEMPERATURE



where the subscript or superscripte is affixed on the coeffi-
cients to the differentials to indicate that the parameters af-
fixed with e are equilibrium quantities such that

Te5 lim
F→0

T~F̂!, pe5 lim
F→0

p~F̂!, m̂a
e5 lim

F→0
m̂a~F̂!.

~2.11!

It must be recognized thatTe , albeit in the limit ofFka→0,
is not of a different temperature scale from that ofT; bothTe
andT are in the same absolute temperature scale, but their
numerical values are different because of the irreversible
processes. The differential form~2.9! implies that there holds
the relation

T215S ]Ĉ

]E D
v,c,F̂

. ~2.12!

This gives the tangent to theĈ surface along theE axis in
spaceGc[GøĈ andT21 is a constitutive relation, which,
together with other constitutive relations forp, m̂a , andXka ,
determines the surfaceĈ in Gc . Equation~2.12! is often
regarded@7,9~a!–~c!,12~b!# as an equation defining ‘‘non-
equilibrium temperature’’T in analogy to the equilibrium
thermodynamic relation arising from Eq.~2.10!

Te
215S ]Se

]E D
v,c

. ~2.128!

Suppose this is the definition ofTe , as is thought by some
authors @7,9~a!–~c!,12~a!–~c!# in EIT. The Te can be ob-
tained from Eq.~2.128! if and only if Se is known, but the
differential form ~2.10!, obtained from the second law by
Clausius, does not permit us to determineSe unlessTe , pe ,
andm̂ a

e are known as functions ofE, v, andca , or E, pe , and
m̂ a

e are known as functions ofTe , v, andca . As mentioned
earlier, thermodynamics does not provide a means to mea-
sureSe directly as a primitive variable.Therefore, it is clear
that Eq. (2.128) is not a definition of Te ; rather, it is a rela-
tion by which the Clausius entropy Se may be determined in
terms of Te with the help of the caloric equation of state that
relatesE to Te , the equation of state, and the chemical po-
tentials. The meaning ofTe has been already fixed univer-
sally by the Carnot theorem and the second law of
thermodynamics—this is Kelvin’s thermodynamic tempera-
ture. A similar conclusion can be drawn from Eq.~2.12!; it is
not a defining equation forT, but an equation by means of
which Ĉ may be determined in terms ofT and variables in
G, provided thatE is given as a function ofT and other
variables inG. CalortropyĈ cannot be directly measured by
means of macroscopic irreversible thermodynamic tech-
niques and one of the tasks of irreversible thermodynamics is
to devise ways to measure indirectly the values ofĈ for
given irreversible processes. We take an analogy from our
everyday affairs: Ĉ is like a filing cabinet~or more aptly, a
computer diskette or a magnetic tape! containing information
on the physical properties of the macroscopic systems of
interest. We make up the ‘‘filing system,’’ for later use, only
on careful analysis of the system properties via constitutive
equations. It is practically impossible to guess and assume
beforehand a mathematical form forĈ in spaceG so as to

construct all the constitutive equations of matter from it. In
fact, the situation is quite opposite because the content ofĈ
is determined on integration of Eq.~2.9! with the help of the
constitutive relations for the coefficients to the differentials
in Eq. ~2.9!. The meaning ofT has been also fixed unam-
biguously by the second law of thermodynamics and given
an operational meaning through the temperature scale uni-
versally fixed~e.g., the absolute temperature scale! as is for
Te in the case of reversible processes, and thermometry on
the system determinesT. It is now clear that irreversible
processes do not alter the situation. A definition of a physical
quantity implies a means of measurement, at least in prin-
ciple, for the quantity, but this important criterion is absent
in the case of Eq.~2.12! as a definition forT. Therefore, we
conclude that Eq.~2.12! as a definition forT in the phenom-
enological theory is a misguided notion and cannot serve the
desired role, although it is usually thought as such by many
authors@e.g., Refs.@7,9~a!–~c!# and @12~a!–~c!## in EIT.

Before proceeding further on the discussion of Refs.
@7, 9, 12#, we digress and mention the differential form ob-
tained by Keizer@5#, since it is relevant to the present dis-
cussion and the viewpoint towardT in it is similar to ours
here. He develops a theory of irreversible processes on the
basis of a fluctuation theory for macroscopic variables that
fluctuate from the thermodynamically determined set of val-
ues. The theory involves a differential form for what he calls
theS function, which appears to be comparable to the Pfaff-
ian form in Eq. ~2.9!. In the differential form forS there
appears the inverse temperatureT21 as an integrating factor
in the manner of Eq.~2.9!, and thisT is considered to be a
local temperature whose numerical value is recorded by a
thermometer inserted at the point of interest at timet. It,
however, must be pointed out that this differential form has
not been shown, in contrast to Eq.~2.9!, to have descended
from the second law of thermodynamics or the Clausius in-
equality in Ref. @5# or in the references cited therein, al-
though the Caratheodory principle is substituted for the sec-
ond law as the basis for the differential form. For irreversible
processes the said principle is not as self-evident as the case
of reversible processes because of the presence of the un-
compensated heat. Nevertheless, there is a convergence of
the viewpoints held by Keizer and by the present authors
with regard to the operational meaning of theT factor ap-
pearing in the differential forms for theĈ andS functions.
These convergent viewpoints towardT are in contrast to
those held by the authors of Refs.@9# and @12#.

We now examine how inevitably the notion of nonequi-
librium temperature arises in the version of EIT described in
Refs.@7,9~a!–~c!,12~a!–~c!#. In this version, the Clausius en-
tropy is straightforwardly generalized so as to be a function
of nonconserved variables as well as the conserved variables.
We denote it byS. This assumption formally yields a differ-
ential form fordtS similar to Eq.~2.9! in mathematical struc-
ture:

dtS5T821FdtE1p8dtv2 (
a51

r

m̂a8dtca1 (
a51

r

(
k>1

Xka8 dtF̂kaG ,
~2.13!

only if the tangents toS are defined by the relations

2504 54BYUNG CHAN EU AND L. S. GARCÍA-COLÍN



T8215S ]S

]ED
v,c,F̂

, ~2.14a!

p8T8215S ]S

]v D E,c,F̂ , ~2.14b!

2m̂a8T8215S ]S

]ca
D
E,v,c8,F̂

, ~2.14c!

Xka8 T8215S ]S

]F̂ka
D
E,v,c,F̂8

. ~2.14d!

Thus, the notion of nonequilibrium temperature, together
with those of nonequilibrium pressure and chemical poten-
tials, has arisen in EIT as a quantity derivable fromS be-
cause it is assumed thatS is known in spaceG and rooted in
thermodynamic laws and its differential form is given by a
1-form reminiscent of the equilibrium Gibbs relation~2.10!.
@The prime on the subscript in the derivatives in Eq.~2.14!
means exclusion of the variable in the derivative.# However,
the differential form~2.13! simply implies thatS is determin-
able as a function of variables inG, provided thatT821,
p8T821, m̂a8T821, andXka8 T821 are given inG and the dif-
ferential form satisfies the integrability conditions; the defi-
nitions ~2.14a!–~2.14d! by no means make the tangents ther-
modynamically operational quantities nor are the derivatives
determined by Eqs.~2.14a!–~2.14d! unlessS is explicitly
known inG. Therefore, the idea that Eq.~2.14a! defines the
temperature of the nonequilibrium system appears to have
originated from the thought thatS is somehow knowna pri-
ori in spaceG, but this is hardly true because all that is
assumed aboutS is that there exists a function inG that
satisfies the differential form~2.13!. We do not even know
the meaning of S from the stand-point of thermodynamic
laws since the Clausius entropy is defined for reversible pro-
cesses only and the differential form (2.13) of its purported
generalization S is completely detached from the second law
of thermodynamics as it stands under the assumption made
on S. The notion thatT8 is some sort of temperature, in fact,
appears to have derived from analogy to the equilibrium
Gibbs relation, but the latter holds only for reversible pro-
cesses and in no way does it imply that a similar relation will
hold for nonequilibrium. Equation~2.13! in Refs. @7, 9, 12#
does not descend from the thermodynamic laws and has no
relation to the latter. If one compares Eq.~2.13! with Eq.
~2.9! and makes the correspondence

Ĉ⇔S, ~2.15!

then and only then mayT8 in Eq. ~2.13! be made to corre-
spond toT in Eq. ~2.9! and thereby given a thermodynamic
operational meaning. But then, this procedure of assuming
such anS only to make correspondence with the phenom-
enological quantityĈ is not warranted since Eq.~2.9! is
already provided by the thermodynamic laws, and the proce-
dure involvingS is superfluous. Putting it differently, one
may say that the versions of EIT as in Refs.@7,12~b!–~c!#

cannot be regarded as thermodynamic theories until the fun-
damental relation, such as~2.9!, has been derived from the
thermodynamic laws.

On the basis of the considerations made up to this point,
we conclude that the notion of nonequilibrium temperature
in the versions of EIT by Jou and co-workers@7,9~a!–~c!#
and Nettleton@12~b!,~c!# has arisen because the assumption
made on a nonequilibrium entropy has no relation to the
second law of thermodynamics. A thermodynamic theory
should be based on the thermodynamic laws.

III. STATISTICAL MECHANICS AND TEMPERATURE

The meaning of temperature has been an important sub-
ject of quest in statistical mechanics and kinetic theory. In
particular, in EIT the question of the temperature of a non-
equilibrium system has been approached from the standpoint
of kinetic theory of matter. In order to put the kinetic theory
approach in a historical setting, let us trace how the concept
of temperature arose in the classical kinetic theory and sta-
tistical mechanics. According to Brush@1#, Bernoulli @13# for
the first time calculated the temperature of an ideal gas in
terms of the average kinetic energy of gas molecules. This
was forgotten, but later revived independently by Herapath
@14# and Waterston@15#, whose works were never given de-
served credit by their contemporaries. The basic point of
their theory is that the average kinetic energy of the mol-
ecules in the gas is a measure of the temperature of the gas.
This basic notion played an important seminal role in the
development of thermodynamics and has survived to this
day. For example, in his seminal paper@27# of 1946 on the
kinetic theory of fluids Kirkwood defined the temperature of
a fluid ~gas or liquid! in terms of the mean kinetic energy of
the fluid, and this definition has been used for temperature in
molecular dynamics simulations@28#. The same definition
has been used in the case of dilute gases, as is evident in the
well-known monographs@29,30# on kinetic theory of gases.
In the case of dense fluids the definition of temperature is
intimately related to the question of bulk viscosity, and di-
vergent views toward it are expressed in the literature
@31,32#. In the statistical approaches to EIT in which dilute
monatomic gases are taken as a model, the temperature of
the system is generally defined in the same manner as those
mentioned earlier. However, the statistical definition of tem-
perature by means of the average kinetic energy is not with-
out a hitch, as will be discussed presently. We first review
how temperature generally enters statistical thermodynamics.
This is evident in the well-known treatises in statistical me-
chanics@33–35#, but we will discuss it to complete the pic-
ture of the matter under examination and for the sake of the
flow of reasoning.

A. Gibbs ensemble method and temperature

In the Gibbs ensemble theory@33–35#, the canonical dis-
tribution function of a system at equilibrium is assumed to be
in the form

f5exp~2bH !/^exp~2bH !&, ~3.1!

whereH is the Hamiltonian of the system andb is an as-yet-
undetermined parameter. The angular brackets denote inte-
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gration in the phase space. The average energyE is then
given by the statistical formula

E5^Hf &, ~3.2!

from which the parameterb may be determined in terms of
E. If the particles interact, then the Hamiltonian contains an
interaction potential-energy term and the relation betweenb
andE is not simple and universal because the equipartition
law no longer remains valid unless the interaction potential
energies happen to be quadratic in coordinates of the par-
ticles. In the case of an ideal gas the relation becomes rather
simple, and by using the ideal gas equation of state given in
terms of absolute temperatureT and the well-known relation

p52E/3V, ~3.3!

whereV is the volume, we find that

b51/kBT, ~3.4!

wherekB is the Boltzmann constant. Such an identification
of b is not possible by way of calculating the average kinetic
energy if the particles are quantum mechanical or relativistic,
even if the gas is ideal, becauseE is not a simple function of
b, although Eq.~3.3! may still hold. Again, the equipartition
law breaks down in these cases. To use the concept of tem-
perature even for relativistic cases, Tolman@16# introduced a
generalized equipartition law, and this approach has been
used by later authors@17# to obtain an expression that ap-
pears to give temperature as the average of an operator in the
cases of quantum gases. However, close examination reveals
that the aforementioned generalized equipartition law is a
rearrangement of the normalization condition of the distribu-
tion function and consequently the temperature operator de-
fined is devoid of an evident physical meaning. This point
becomes even more cogent in the case of dense fluids where
interactions of particles become important, since the tem-
perature operator consequently is not identifiable in a univer-
sal form.

In general, the parameterb in the canonical form~3.1! is
determined with the help of thermodynamics by comparing
the statistical entropy and other statistically computed me-
chanical observables with the Clausius entropy and the phe-
nomenological thermodynamic observables. Such a calcula-
tion led Boltzmann@36# to realize that hisH function could
serve as a statistical formula for the Clausius entropy in the
case of a dilute gas in equilibrium. In the later synthesis by
Gibbs@33# of the Maxwell-Boltzmann statistical theory, such
correspondence determines the parameterb in the canonical
form by the relation as in Eq.~3.4! for all forms of aggrega-
tion of matter in equilibrium. Recall thatT in Eq. ~3.4! is the
thermodynamic temperature of the heat reservoir, the scale
of which may be made coincident with the absolute tempera-
ture scale@37#. It is the very temperature appearing in the
Clausius inequality for a reversible process:

R dSe5 R
rev

dQ

T
50, ~3.5!

wheredSe5dQ/T is the global~Clausius! entropy change as
defined by Clausius for a reversible process. This manner of

identifying b is free from the assumption on the nature of
matter and is universal and rigorous inasmuch as the second
law of thermodynamics is universal and axiomatic. Thus, we
see that the parameterb in the canonical distribution func-
tion ~3.1! is given in terms of the absolute temperature by
virtue of thermodynamics, which indispensably and unavoid-
ably manifests itself in the process of correspondence be-
tween thermodynamics and the statistical theory of matter
simply because we insist that the canonical form~3.1! de-
scribe the thermodynamic system at the statistical level, and,
fortunately, the statistically derived formula fordSe matches
with the phenomenological theory formula for the same. This
is the beauty of the canonical distribution function. From the
purely mathematical and probabilistic standpoint detached
from thermodynamics the parameterb is related to the mean
energyE andnothing like Eq. (3.4) can be inferred within
the framework of the probability theory alone. In fact, the
ideal gas represents a degenerate case, since it happens that
E5 3

2nkBT by virtue of mathematics and this relation hap-
pens to be consistent with Eqs.~3.3! and~3.4! as well as the
equilibrium Gibbs relation fordSe ; an accidental mutual
consistency no longer enjoyed by the ideal quantum gases
@6,38# and ideal relativistic gases@6,39# owing to the fact
thatE is no longer a simple linear function ofb21. This is an
observation on well-known statistical-mechanical results
from a nonconventional angle. If a unified description of
diverse, but seemingly related, facts in physical phenomena
is one of the important goals of physics, then the aforemen-
tioned aspect regarding the relation ofE to temperature tells
us otherwise about the role of kinetic energy in connection
with temperature in statistical thermodynamics. The relation
between temperature and kinetic energy is subtler than com-
monly thought in kinetic theory.

In summary, for the equilibrium canonical form and the
parameterb therein, the temperature enters the statistical-
mechanical formalism through the correspondence between
the phenomenological~i.e., thermodynamic! equilibrium
Gibbs relation and the corresponding statistically computed
relation. The concept that the average kinetic energy is the
statistical definition of temperature is not universal and
therefore does not meet the universality condition required
for a temperature scale from the viewpoint of rigorous ther-
mometry@40#. In any case, the equilibrium Gibbs ensemble
theory can do without the statistical definition of temperature
as long as there is the equilibrium Gibbs relation for the
entropy change provided by the thermodynamic laws for re-
versible processes, since then the parameterb in the canoni-
cal distribution function can be determined by the method of
thermodynamic correspondence between the thermodynamic
phenomenology and the statistical thermodynamic theory.

B. Some versions of EIT and temperature

The statistical foundations of EIT have been investigated
by means of the Boltzmann equation by a number of authors.
Some @7,41–43# approached the subject by using approxi-
mate distribution functions; in another@7,12~b!# a maximum
entropy method was taken; and in still another@6,18~a!# a
rigorous approach was pursued. The first two approaches
will be grouped as versionA since they represent the same
line of viewpoint. The last one taken in Refs.@6# and@18~a!#
will be called versionB. These two versions will be consid-
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ered separately. In both versions the temperature of a non-
equilibrium monatomic ideal gas mixture is ‘‘defined’’ by
the mean kinetic energy

rE5 (
a51

r

^ 1
2maCa

2f a&[
3
2nkBu, ~3.6!

whereu is the nonequilibrium temperature,Ca is the peculiar
velocity, n is the number density, andf a is a singlet distri-
bution function obeying the Boltzmann equation. However,
the interpretation ofu is made differently in versionsA and
B. The Boltzmann kinetic theory provides a statistical for-
mula, theH function, that at a quick glance appears to meet
the billing for the Clausius entropy and its nonequilibrium
generalization. TheH function gives the Boltzmann entropy
density

rS52kB(
a51

r

^ f a~ lnf a21!&, ~3.7!

where the angular brackets mean integration in velocity. This
formula is also common to versionsA andB, but its role in
the theory of irreversible processes is significantly different
in the two versions.

1. Version A and temperature

In Refs. @7# and @9~a!–~c!# the nonequilibrium tempera-
ture u is also defined in terms of the energy derivative ofS:

u215S ]S

]ED . ~3.8!

The same relation can be inferred from the differential form
for dS in Refs. @12~b!,12~c!#. The two definitions~3.6! and
~3.8!, being for the same attribute of the system, must be
self-consistent. Temperature, being the most basic quantity
in thermal physics, must be rigorously defined and consistent
with the thermodynamic laws. Therefore, one cannot afford
an inconsistency between Eqs.~3.6! and ~3.8!, for example.
In Refs. @7,9~c!,12~b!#, in addition to Eqs.~3.6! and ~3.8!
where u appears,f a enters expressed in a nonequilibrium
canonical formf a

m,

f a
m5exp@2b~Ha1ga•Aa!#/^exp@2b~Ha1ga•Aa!#&,

~3.9!

wherega is a row vector of undetermined multipliers andAa
is a column vector consisting of conjugate variables to the
undetermined multipliers. These latter variables depend on
the velocities of the particles. Thef a

m in Eq. ~3.9! allegedly
yields ‘‘a maximum’’ rS in Eq. ~3.7!, since it is obtained by
‘‘maximizing’’ the entropy. ~The term maximization or ex-
tremization used in this context is incorrect, but we will not
dwell on it here since it is beside the point of this paper.! In
the aforementioned references,b is claimed to be related to
nonequilibrium temperatureu by the formula

b51/kBu ~3.10!

because with Eq.~3.9! S is asserted to be given, within the
framework of the maximum entropy method, by the postu-
lated differential form

udtS5dtE1pdtv2 (
a51

r

m̂adtca1 (
a51

r

ga•dtAa ,

~3.11!

and furthermore Eq.~3.11! is, by virtue of the formal anal-
ogy to the equilibrium Gibbs relation, simply asserted to be a
representation of the thermodynamic laws for irreversible
processes and for nonequilibrium. Hence the term nonequi-
librium temperature foru. Equation~3.10! follows from Eqs.
~3.8! and~3.9! if Eq. ~3.11! is indeed true. We now examine
Eq. ~3.11!. Equation~3.11! does not follow unless

rS52kB(
a51

r

^ f a
m~ lnf a

m21!& ~3.12!

and additional conditions ondtAa , that is, the evolution
equations forAa are met. These conditions are elucidated in
Ref. @18~a!#, where it is shown that all is not well with Eqs.
~3.11! and~3.12!. In any case, iff a

m is the distribution func-
tion maximizingS, then there is a fluctuation inf a . This
fluctuation cannot be neglected. Even iff a

m is such that there
hold the conditions

^~ f a2 f a
m!&50, ^~ f a2 f a

m!Ha&50, ^~ f a2 f a
m!Aa&50,

~3.13!

there exists the relative Boltzmann entropySr [ f u f
m], such

that @18~a!#

rS52kB(
a51

r

^ f a~ lnf a
m21!&2rSr@ f u f m#, ~3.14!

where

rSr@ f u f m#5kB(
a51

r

^ f aln~ f a / f a
m!&. ~3.15!

This relative Boltzmann entropy does not vanish away from
the state ‘‘maximizing’’S. ~Note thatS is a maximum only
at equilibrium reached in long time@6#.! Therefore, Eq.
~3.12! must be an approximation that neglectsSr [ f u f

m]. Fur-
thermore, a nonvanishingSr [ f u f

m] makes Eq.~3.9! inconsis-
tent with Eq.~3.8!, that is, Eq.~3.8! is not true. The reason
for this will become evident in the subsequent discussion.
Even if they were consistent with each other, Eq.~3.11!
would be given a thermodynamic status, only if it was made
to correspond to its thermodynamic counterpart derived from
the thermodynamic laws. However, since such a thermody-
namic counterpart is absent not only for the Boltzmann en-
tropy but also in the nonequilibrium entropyS in versionA
„EIT developed in Refs.@7,8,9~a!–~c!,12~b!#… it is not pos-
sible to endow Eq.~3.11! with a thermodynamic status.
Therefore Eq.~3.8! does not define a thermodynamically op-
erational quantity; it is simply a symbolic relation betweenS
andu in a probabilistic theory of dynamical objects, which
holds under the assumption thatSr [ f u f

m]50 and under the
conditions ondtAa that can be inferred from Refs.@18~a!,
22. If these restrictions are not met, the Pfaffian form~3.11!
does not hold fordtS and Eq.~3.8! does not follow. In fact,
it is easy to show that the assumptionSr [ f u f

m]50 is incom-
patible with the conditions ondtAa @18~a!,22#, and Eq.~3.11!
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is not true. A similar conclusion that Eq.~3.11! is not true
has been recently drawn by Ichiyanagi@44# from the view-
point of the Onsager-Machlup theory.

2. Version B and temperature

In Refs.@6, 18~a!# it is shown that the sufficient conditions
for conserved variables to remain constant in space-time are
the matching conditions

rE5 (
a51

r

^ 1
2maCa

2f a&5 (
a51

r

^ 1
2maCa

2f a
m&5reEe ,

~3.16a!

r5 (
a51

r

^maf a&5 (
a51

r

^maf a
m&5re , ~3.16b!

ru5 (
a51

r

^mavaf a&5 (
a51

r

^mavaf a
m&5reu. ~3.16c!

Furthermore, if the nonequilibrium canonical form is given
in terms of the complete set of tensor Hermite polynomials
H(k)~wa! of reduced peculiar velocitywa5AbmaCa by the
formula

f a
c5expH 2bFHa1 (

k>1
XkaH~k!~wa!2mam̂aG J ,

~3.17!

whereb andXka are as-yet-undetermined parameters andm̂a
is the normalization factor, then with the statistical definition
of calortropyĈ

rĈ52kB(
a51

r

^ f a~ lnf a
c21!& ~3.18!

and the relative Boltzmann entropy

rSr@ f u f c#5kB(
a51

r

^ f aln~ f a / f a
c!&, ~3.19!

it is possible to show that the differential form fordtĈ is
given by

dtĈ5T21FdtE1pdtv2 (
a51

r

m̂adtca1 (
a51

r

(
k>1

XkadtF̂kaG .
~3.20!

HereF̂ka is defined by the statistical formula

Fka5rF̂ka5^ f aH~k!~wa!&. ~3.21!

Definitions ~3.18! and ~3.19! imply that

S5Ĉ2Sr@ fufc#, ~3.22a!

dtS5dtĈ2dtSr@ f u f c#, ~3.22b!

but Sr [ f u f
c]Þ0 and dtSr [ f u f

c]Þ0 for systems away from
equilibrium @18~a!,~b!#. Nevertheless, sincedtĈ in ~3.20! is
in a 1-form similar to~2.9! it is possible to correspond the
statistically derived differential form~3.20! to the phenom-

enological thermodynamic differential form~2.9! obtained
from the thermodynamic laws. We thereby obtain a relation
betweenb andT

b51/kBT, ~3.23!

which identifies the parameterb in terms of inverse thermo-
dynamic temperatureT21. The point of this analysis then is
that in version A of EIT the nonequilibrium entropyS as in
Eq. ~3.12! must be replaced by the calortropy, since the
right-hand side of Eq.~3.12! with Eq. ~3.13! is preciselyrĈ
as defined by Eq.~3.18! if the conditions in Eq.~3.13! are
imposed. Then and only then is it possible to make the ther-
modynamic correspondence as described earlier and the ther-
modynamic temperature is related toĈ by the derivative

T215S ]Ĉ

]E D
v,c,F̂

. ~3.24!

We emphasize that, by virtue of the correspondence of Eq.
~2.9! with Eq. ~3.20!, T here is the thermodynamic tempera-
ture as in Eq.~2.9!. Thus, Eq.~3.24! provides a way to de-
termine Ĉ in terms ofT unless one elects to calculateĈ
statistically, but it should not be construed as a definition of
T. If one had exactly calculatedĈ andE by using the non-
equilibrium canonical form~3.17!, then Eq. ~3.24! would
reproduce Eq.~3.23! and thereby serve as a check for the
correctness of the calculation performed. In practice, by us-
ing the nonequilibrium partition functionZ @18~b!#, Eq.
~3.24! may be cast into the constitutive equation, namely, the
statistical formula for the caloric equation of state

Cv5TS ]C

]T D
v,c,F̂

5kBTS ]2

]T2
T lnZD

v,c,F̂

. ~3.25!

Here

Z5 )
a51

r

Za
Na5expS 2b (

a51

r

maNaD
5 )

a51

r H na21K expF2bSHa1 (
k>1

XkaH~k!~wa!D G L J Na
with Na denotingNa5Vrca/ma . If Cv is treated as a phe-
nomenological quantity, the first equality in Eq.~3.25! deter-
minesĈ from the knowledge ofCv . If the second equality is
used,Cv is calculated from the knowledge ofZ. However, in
no cases does~3.25! defineT; rather,Cv is given in terms of
the empirical parameterT. Phenomenologically, the impor-
tant task of determiningĈ, together withp, m̂a , andXka ,
belongs to the realm of irreversible thermodynamics. In this
connection, we would like to add here a note onm̂a . By
using the previously cited fluctuation theory, Keizer@5# has
deduced from the differential form for hisS function the
constitutive parametersm̂a as empirical chemical potentials
on the same footing as the temperature. That is,m̂a are
thermodynamics-based in the same sense as the temperature,
even if the system is displaced from equilibrium. Keizer and
Chang@45# measured the electromotive force of a reacting
nonequilibrium system by means of the conventional method
and detected a nonequilibrium effect. This result is corrobo-
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rated by Hjelmfelt and Ross@46#, although they are not com-
pletely certain as to the conclusion of Keizeret al. The im-
plication of these experiments is that there is no necessity of
making a distinction between the equilibrium and nonequi-
librium chemical potentials, which only differ in their nu-
merical values, but of simply measuring them as usual in a
nonequilibrium condition. They do not appear as two differ-
ent quantities in macroscopic equations describing irrevers-
ible processes in the manneru andT appear in the theory of
Refs. @9~a!–~c!#, which will be discussed in the subsequent
sections. It is important to remember that no equilibrium
thermodynamic measurements are truly measurements on
ideal reversible processes, and there are always elements of
departure from the ideality, but the latter feature does not
require, for example, another thermometric scale different
from that for the ideal measurements.

In summary of the statistical aspect of temperature, we
have pointed out that the mean kinetic energy does not gen-
erally serve as a statistical definition of temperature;Ĉ is not
completely determined in thermodynamic spaceG until b is
made to correspond to the thermodynamic temperature and
thus its thermodynamic meaning elucidated and therefore,
~3.24! or a similar form with Ĉ replaced byS does not
define temperature, but simply gives the parameterb in
terms of undeterminedT. Consequently, if statistical me-
chanics is to have a relevance to irreversible thermodynamics
or simply thermodynamics, temperature orb appearing in
either equilibrium or nonequilibrium statistical mechanics
must be the phenomenological temperature appearing in
thermodynamics, namely, the thermodynamic temperature.
Therefore, in the spirit of the Gibbs ensemble theory the
temperature of the system, whether equilibrium or nonequi-
librium, is a phenomenological attribute of the system, even
in the statistical theory of molecular systems. The present
authors believe that the misconception about this subtle but
important point has been the cause of numerous confusing
results and propositions in EIT.

3. Further comment on nonequilibrium temperature

In a recent paper@12~a!#, Nettleton asserts that the non-
equilibrium temperature defined in Refs.@7,9~c!# can be well
approximated by the equilibrium temperature. We put his
assertion in the notation of the present paper. The tempera-
tures of nonequilibrium and local equilibrium systems are
defined, respectively, by the formulas

3
2nkBu5 (

a51

r

^ 1
2maCa

2f a&, ~3.26a!

3
2nkBTe5 (

a51

r

^ 1
2maCa

2f a
e&. ~3.26b!

Then, according to his calculation

u5Te1Du. ~3.27!

The nonequilibrium temperature appears in this form in Refs.
@9~a!–~c!#. SinceDu is on the order of 1022 for a hard-sphere
fluid @12~a!#, he concludes thatu may be replaced by the
local equilibrium temperatureTe to a good approximation
for all densities. In the case of liquids or dense gases, his

calculation simply shows that the temperature defined in mo-
lecular dynamics simulations@28# is tolerable as an approxi-
mation. It by no means should be construed as the accept-
ability of the definition ~3.26a! of nonequilibrium
temperature since temperature cannot be defined approxi-
mately if one is to use it as a gauge to measure all thermal
properties of matter. An approximate scale of temperature
would be simply nonscientific. Furthermore, as discussed
earlier,S must be replaced byĈ, andu is simply the local
temperature. In the case of dilute monatomic gases, his cal-
culation just points out that the notion of nonequilibrium
temperature is perpetuated by an incorrect understanding of
kinetic theory and thus is meaningless, since the matching
conditions given in Eq.~3.16! guarantee that the nonequilib-
rium temperatureu defined by Eq.~3.26a! is identical to the
local thermodynamic temperatureTe , namely,Du50 identi-
cally. Therefore, the differences in temperatures he obtained
for various cases of transport processes are simply due to the
numerical errors incurred by the approximation made for the
distribution function if his calculation is specialized to dilute
monatomic gases. The comments made earlier in connection
with the nonequilibrium temperature also apply to his calcu-
lations made for a dense hard-sphere fluid, since he, too,
defines the nonequilibrium temperature with~3.8! or ~3.26a!.

IV. DISCUSSION AND CONCLUDING REMARKS

Having analyzed the general aspects of temperature of
nonequilibrium systems, we now discuss in more detail the
main point of the recent proposition by Jou and Casas-
Vazquez@9~a!–~c!# for experiment on nonequilibrium tem-
perature. As we have seen in the previous sections, the con-
cept of temperature is intimately tied up with the notion of
entropy and its nonequilibrium generalization. The afore-
mentioned authors take the viewpoint that ‘‘EIT does not
pretend to be an exact theory, but rather a model which al-
lows for formulation of a nonequilibrium thermodynamic
theory not baseda priori on the local-equilibrium hypoth-
esis.’’ Thermodynamics, reversible or irreversible, is an axi-
omatic theory that studies the consequences of the axioms
summarizing macroscopic processes occurring in nature.
From this viewpoint toward the subject, the following com-
ment is made on the aforementioned quotation: An ap-
proximate thermodynamics loses itsraison d’être, since it
deprives itself of the authority to rule on the thermodynamic
correctness of macroscopic theories, which we develop for
macroscopic irreversible processes. By thermodynamic cor-
rectness we mean the strict conformation to the thermody-
namic laws and their consequences. Notwithstanding this
maxim, guided by the viewpoint just quoted, a nonequilib-
rium temperatureu was defined in Refs.@9~a!–~c!# by means
of an approximate form for a ‘‘generalized entropy’’ for a
rigid heat conductor

S~E,q!5Seq~E!2~vt/2lT2!q•q, ~4.1!

whereE is the internal energy,Seq~E! is the local equilibrium
entropy,T is the local equilibrium absolute temperature,q is
the heat flux,l is the thermal conductivity, andt is the
relaxation time ofq that obeys the evolution equation
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t
]q

]t
1q52l“u. ~4.2!

The quantityu is the ‘‘generalized absolute temperature’’
defined earlier in~3.8!. Thus, for the approximateS~E,q! in
Eq. ~4.1!

u215T212gq•q, ~4.3!

g5
]

]E ~vt/2lT2!. ~4.4!

Let us now return to~4.1! and mull over its origin and mean-
ing. The first fundamental assumption is the extendability of
the Clausius entropy into the domain of nonequilibrium, and
the second entails the dependence ofS on the local equilib-
rium absolute temperature and other parameters of the spe-
cific form as in Eq.~4.1!. They are a pair of assumptions
subordinating one to the other. They have no relation to the
thermodynamic laws and, especially, the second law. To jus-
tify Eqs. ~4.1! and~4.3! the dilute gas kinetic theory of Bolt-
zmann has been used@9,47#. As has been pointed out in the
last paragraph of Sec. III, if the gas is a dilute Boltzmannian
gas, then the matching conditions~3.16! imply that u5T
~local temperature! identically if the temperatures are defined
by Eqs.~3.26a! and ~3.26b! as also in Ref.@9~a!#. Thus, we
conclude thatu is the local absolute temperature. In fact, the
second term on the right-hand side of Eq.~4.3! is a conse-
quence of using an approximation to compute Eq.~3.6! or
~3.26a!. It is known that a rigorous formulation@18~a!,~b!# of
the theory using Eq.~3.17! shows otherwise. A similar point
is also brought up in a recent paper@48# where the Boltz-
mann equation is ‘‘solved’’ by using Grad’s moment expan-
sion that takes the infinite number of moments in the series
as local conserved variables. The resulting expression for the
Boltzmann entropy density defined in Eq.~3.7! shows that,
as is already indicated in Sec. III B 3, the quantityu21 as
defined in Eq.~3.8! is identical to the inverse of the local
temperature introduced through Eq.~3.16a! for ideal gases.

Although it is not mentioned in the aforementioned refer-
ences thatl andt depend onT, they must be dependent on
T, sinceT appears on the right-hand side of Eq.~4.1!. On the
other hand, they also appear in Eq.~4.2! whereu also ap-
pears. Since the constitutive equation~4.2! is supposed to
involve the ‘‘nonequilibrium temperature,’’ shouldt and l
then be regarded as functions ofu? This dilemma can be
resolved by assuming thatt and l are either constants or
u5T as suggested by the matching conditions~3.16!. The
assumption that they are constants is too restrictive since
even hard-sphere fluids have temperature-dependent thermal
conductivities. Therefore, suppose thatuÞT, as suggested by
~4.3!, and furthert5t(T) and l5l(T) in conformation to
the assumption~4.1!. This supposition has a difficulty at the
hydrodynamic level of calculation, as is discussed below.

First, let us recall that the internal energy is a function of
‘‘nonequilibrium temperature’’u, notT, in versionA of EIT:
Therefore, the energy balance equation provides an evolution
equation ofu which may be formally written as

]u

]t
5F~u,q!. ~4.5!

This interpretation is consistent with~4.2!. If l5l(T) and
t5t(T), the coupled pair of equations~4.2! and~4.5! cannot
be solved foru andq unless the local temperatureT is given
its spatial distribution. However, it is clear that the profile of
T cannot be known from the set of equations~4.2! and~4.5!
given. This suggests that the theory based on ‘‘nonequilibri-
um temperature’’u is either incomplete or ill posed. The
trouble lies inu. If this is replaced by the local temperature
T, the aforementioned difficulty never arises. The indeter-
minability of u also implies thatq is not determined and
consequently neither is the generalized entropyS. Therefore,
the concept of ‘‘nonequilibrium temperature’’ unhinges the
entire structure of irreversible thermodynamics they intend to
construct. As we have shown in Sec. III, temperature does
not permit a margin for an approximation. Especially, if the
generalized entropy is not based on the second law, no math-
ematically and thermodynamically consistent theory of irre-
versible processes can be expected. Besides, definition~4.3!
is in fact under determined. The point is, there is no ‘‘non-
equilibrium temperature’’; we have only the thermodynamic
temperature coincident with the absolute temperature regard-
less of whether the system is in equilibrium or nonequilib-
rium. If the system is in nonequilibrium the thermometer
may read a different local temperature from the local tem-
perature of the same system at equilibrium in the same tem-
perature scale. The concept of nonequilibrium temperature is
a path that leads up a blind alley in thermodynamics and
hydrodynamics.

Second, even if one proceeds directly from the differential
of S5S~E,q! by following the steps outlined in Ref.@9~c!#
where the Boltzmann kinetic theory underlies the analysis,
the parametersl andt in Eq. ~4.2! are, in general, functions
of E andq. Thus Eq.~4.2! is at best a nonlinear differential
equation forq, which, together with the energy conservation
equation

rdtE52“•q2P:“u ~4.6!

constitutes a set of evolution equations for the thermody-
namic state variablesE andq that must be solved subject to
the initial and boundary conditions appropriate for the prob-
lem at hand. Since this problem is not solvable in a general
form even if analytic solutions are possible, it is doubtful that
the steady-state equations of~4.2! and ~4.6!

q52l¹u, ~4.7a!

“•q50, ~4.7b!

define a temperature scale that should be universal.~Note
that we are assuming there is no flow of the gas, namely,
u50.! These equations will also have to be consistent withS
as expressed by Eq.~4.1!. Since the latter expression forS
has been inspired by the Grad moment solution to the Bolt-
zmann equation, the evolution equation obtained forq by
such a method ought to be such that Eqs.~4.7a! and ~4.7b!
should follow within the framework of the moment method.
That is not the case. No matter how many moments are in-
cluded in the solution@49,50#, no kinetic theory support for
Eq. ~4.7a! is attained, but one generally gets

q52l~r ,t !“T~r ,t !, ~4.8!
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where the thermal conductivity is generally position and time
dependent or, in the Fourier space, wave number and fre-
quency dependent. It must be emphasized thatT~r ,t! appears
but u does not in this expression. This is consistent with
generalized hydrodynamics, the validity of which is sup-
ported by experiment@51#. These arguments presented here
reinforce the unphysical character of a theory based on Eqs.
~4.1! and~4.2!. In any case, it seems clear that the definition
and scale of temperature cannot be system dependent con-
trary to the implication of Eq.~4.2! to the opposite effect.
However, the universality of temperature is the most impor-
tant aspect of the temperature concept in thermodynamics,
both reversible and irreversible.

In conclusion of this paper, we have discussed how tem-
perature enters the thermodynamics of irreversible processes
and the nonequilibrium canonical distribution function in the
statistical-mechanical formulation of irreversible thermody-
namics and that it does ultimately originate from the Clau-
sius inequality. Consideration of both equilibrium and non-
equilibrium theories shows that the inverse temperature
parameterb appearing in the nonequilibrium canonical dis-
tribution function cannot be generally determined without
the help of the phenomenological extended Gibbs relation
for the calortropy obtained from the second law of thermo-
dynamics, namely, the Clausius inequality, and that the mean

kinetic energy as the definition of temperature in even the
case of dilute gases is too special to be generally useful for
fluids other than dilute Boltzmann gases. The aforemen-
tioned parameterb is given by the local phenomenological
temperature, and there is no other temperature admissible
than that by the zeroth law and the second law; it is the
quantity that is associated with the heat reservoirs, even
when the system is away from equilibrium. When this notion
of temperature does not hold to be valid, the extended theory
of irreversible processes that we know from the literature is
no longer applicable and we pass the realm of irreversible
thermodynamics governed by the thermodynamic laws into a
nonthermodynamic realm of many-particle phenomena that
is as yet uncharted. The notion that the ‘‘nonequilibrium
temperature’’u can be defined by the relation~3.8! is not
connected with the thermodynamic principles, and we have
shown that it can give rise to difficulties kinetically, thermo-
dynamically, and hydrodynamically.
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